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Abstract. The paper is concerned with the development of perturbation theory for 
non-ideal systems of particles. An approach similar to cluster expansions is used. The given 
perturbation theory can be used when the disturbance of the interaction potential A 4  is 
higher than kT but is of a short-range nature. 

1. Introduction 

The thermodynamic perturbation theory for the correlation functions of weakly 
non-ideal systems was developed by Mayer and Montroll(l941) and De Boer (1948). 
These studies were based on the method of cluster expansion, and an ideal gas was 
selected as a reference system. 

With the development of analytical and numerical methods it became possible to 
build up a perturbation theory of non-ideal systems, in which the results obtained for 
non-ideal systems of particles with a model interaction potential were used as a 
reference system. The model interaction potential can be short-range, long-range or of 
a general nature. There are various modifications of the perturbation theory for 
non-ideal systems depending on the selection of zero approximation (see for example 
Bazarov 1957, Ebeling etal 1966, Gubbins etal  1971, Fulinski 1972, Lado 1974). 

The correlation functions of a system of hard spheres are mainly used as zero 
approximation for neutral liquids (Gubbins et a1 1971). The corrections due to the 
Lennard-Jones potential were found by expanding in the Taylor series. Two types of 
corrections were obtained; one associated with the difference between the repulsive 
part of the Lennard-Jones and the hard-sphere potential, the other connected with the 
attractive part of the Lennard-Jones potential. In this case the part of the potential 
describing the attraction of the particles is considered as a small disturbance with 
respect to kT. 

Another method was proposed in the work by Lado (1974). The integral equation 
for the disturbing correction of the correlation function was obtained from integral 
equations of the Percus-Yevick type and convolution hypernetted chains (CHNC) were 
used for the reference and disturbing systems. 

The perturbation theory for correlation functions has also been considered for both 
plasmas and electrolytes. In the work by Ebeling et a1 (1966) a chain of equations 
BBGKY for correlation functions is used to study the disturbance due to the short-range 
part of the potential. Bazarov (1957) uses the approach associated with expansion by 

38 1 



382 V S Filinov and B V Zelener 

functional derivatives of the function f ( r )  = exp(-pA4) - 1 (where p = l / k T  is the 
inverse temperature, Ad is the potential disturbance and f ( r )  << 1). 

Modern high-speed electronic computers make it possible to use the method of 
molecular dynamics and the Monte-Carlo method for accurate analysis of correlation 
functions of standard model non-ideal systems of particles whose interaction potentials 
include both the short-range and long-range parts. In this case the correlation functions 
calculated with the help of computers can be taken as the zero approximation of the 
perturbation theory. The corrections associated with the potential variation are defined 
by the perturbation theory. The potential variations are usually of a short-range nature, 
since the short-distance potential parts are not adequately known, whereas the 
behaviour of the large-distance potential parts is always known much more accurately. 

In the present paper an approach associated with cluster expansion is used to build 
up a perturbation theory for correlation functions. The developed perturbation theory 
is applicable when the potential change is short-range but not small compared to kT. A 
similar formulation of the problem is to be found in a paper by Zelener et a1 (1976) 
dealing with the perturbation theory for thermodynamic values. 

2. The perturbation theory for 8 single-component system 

Let us consider two systems, each consisting of N identical particles with coordinates 4z 
in thermodynamic equilibrium in a volume V at a temperature T. Let the potential of 
interaction between the particles in one system be 4 and in the other system 4'. In this 
case we have 

= 4 ( r )  - dO(r) 
where the potentials include both short-range and long-range parts. For the system 
with 4 the correlation function has the following form: 

where ( q ) m  = (41, . . . , 4m),  (q)NPm = (qm+l, . . . , qN), o = V/N,  p = l / k T  is the inverse 
temperature, dij = d(14, -qjl), and 0, = Iv. . . IV exp(-P X i < j  dij) d(q)N. The index N 
of the correlation function means that we consider a prior-limit expression for the 
correlation function. 

Introducing the functions fii similar to the Mayer functions 

fij =f ( r z j )  = exp(-PAdij)- 1 

we can rewrite expression (1) in the following manner: 

where the prime following the product symbol indicates that the product has no factors 
containing f i i ,  in which i and j are at the same time less than or equal to m. 
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where a",!,. . . Ivexp(-P z,<j4P,) d(q)N, and (4Ifl = ( q m + l ,  . . . , q m + n ) .  The primed 
sum includes all possible products of the factors f i , .  Each product must be dependent on 
all the coordinates (q)", but no product may have factors containinghi, where i and j are 
at the same time less than or equal to m (1 s i < j SN). The other coordinates 
( q ) N - ( m + n )  can be used for the integration. So the result is expressed in terms of 
g z ( q ) m ,  ( q ) , , ] .  As the integrals do not depend on the numbering of the coordinates, one 
must multiply by a factor ( N -  m)![ (N-  m -n ) !n  ! I - ' .  

Further transformations can be done by using an algebraic method due to Ruelle 
(1964). However for our purposes this method should be somewhat modified. Let us 
consider the finite-dimensional vector space AN-m+l of sequences 4: 

iL={$[(4)m, ( 4 ) 0 1 ,  $ [ ( 4 ) m ,  ( S ) l I ,  * . * , $[(q)m, ( 4 ) ~ - m I )  

such that for each m and n(n = 0, . . . , N-m)$[ (q ) , ,  (q), ,]? is a bounded Lebesque 
measurable function on Vm+". It will be convenient also to write 

$ [ ( q ) m ,  ( 4 ) n 1 =  $ [ ( 4 ) m ,  a ] =  $ [ 4 1 ,  . * * 7 qm,  q m + l ,  * * 7 q m + n ] *  

Now let us define a product of sequences q2 and $ E AN-m+l (Ruelle 1964): 

where the summation extends over all subsequences R of Q and Q\R is the subse- 
quence of Q obtained by striking out the elements of R in Q. The sum includes 
X i = o  n ! [k! (n  - k ) ! ] - '  = 2" terms. 

Let us consider the N - m  + 1 projections (Halmos 1958): 

pk$={o, 0, * * 3 $ [ ( q ) m ,  (q)kl,  0, > 0) ( k  = O , .  . . , N - m ) .  

It is easily seen that PkPk =Pk. So we get 

77 * Pd'[(4)m, Q l =  e(n - k )  C 7 7 [ ( q ) m ,  Q\RkI$[(q)m, Rkl. ( 5 )  
RkcQ 

Here we use the 0 function; it is defined by e ( i )  = 0 for i < 0 and 6 ( i )  = 1 fori  3 0 and& 
is (q,l, , , . , qi,) ( j l  < , . . < j k ) .  For instance. 

77 * PO$ = { v [ ( q ) m ,  ( 4 ) 0 1 $ [ ( 4 ) m ,  (41017 * * 9 7 7 [ ( 4 ) m ,  (q)~-mI$[(q)m,  (4)01) 
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If $ is the unit element $={l, O , O , .  . . ,0} then q*Po$=q and q * P k $ = O  for 
k >O. 

Now let us consider the sequence w = { ~ [ ( q ) ~ ,  (q)O], . . . , ~ [ ( q ) ~ ,  (q)N-m]} where 

1, . . . , N - m. The prime following the sum means that the summation extends over all 
products IIxm+Jii  depending on all the coordinates (q),,, but the products have no 
factors containing fi,, in which i and j are at the same time less than or equal to m. 

Let us consider the set of N -  m + 1 sequences 77'(1= 0, , . . , N -  m )  of the following 
form: 77' ={l, 0, ~ ' ( q ) ~ ,  . . . , q (q)N-m}. Thus none of the functions 77'(4),, depend 
on coordinates ( s ) ~  and ~ ' ( q ) , ,  = 8(N-m -Z-n)+'(q),,, where 77'(4),, = gk-m-&),, 
X (8, IIx,Jj) ,  gLWm-, is the correlation function of the system consisting of N - m - Z 
identical particles with interaction potentials 4'; the sum indicates that the summation 
extends over all products n,Li depending on all the coordinates (q),,. Notice that for 
n > N - m - 1,q '(q),, = 0. Now consider a sequence of unknown functions U = 

The equation w = 8FZ: (77 * & U )  defines a single sequence U which is easily seen 

w[(q)m7 (4101 = s!$q)m and w[(q)m7 ( 4 ~ 1  = g!J(q)m, ( q ) n I ( ~ ; , , , + ~  nX,, ,+,f i ,> for n = 

r 

{u[(q)m, ( ~ ) o I ,  * I 7 U[(q)m, (q)N-m]}* 

from the coordinate form of this equation: 

Each new unknown function ~ [ ( q ) ~ ,  (q),,] appears in a new equation, therefore, we may 
easily invert (6) .  

Let us define the polynomial ~ { ( q ) ~ ,  t }  in a variable t :  

where w," = 1,. . .I, w[(q),, (q),,] d(q),. If t = U-' then we obtain 
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We can rewrite this expression in the following form: 

gN(q)m =(Q",/QN) n (l+fii) 1 (onn!)-'  1 O(n -k)n![k!(n -k)!]-' 
m N-m N-m 

i <I  n=O k =O 

x o ( N - m  -n)?jk-kur 
m N-m 

iCj k = O  
= n (1 + f i j )  1 ( o k k ! ) - l U r [ Q ~ - m - k Q ~ / Q N Q ~ - m - k I  

where 

and we use 

N-m-k 

[ = O  
x [ 1 ( N -  m - k)![l!(N- m - k -/)!I-' 

Using the cluster integrals Cey: 
Ce = U r- 1/ k ! 

we have for the correlation funcpns  
m N - m + l  

gN(q)m = II (1 1 k ~ ~ Q ~ - m - k + l Q ~ / Q N Q " , - m - k + l I  
i < j  k = l  

At N+ CO, V+ CO, V / N  = v the expression QN-lN!/QN(N- l ) !  does not depend on 
N and is equal to activity (Isihara 1971), therefore when approaching the 
thermodynamic limit gN(q), assumes the forms: 

m 

g(q)m = om n (1 +hi) f k@7sm+&-l 
l < j  k = l  

where 

Using relation (7) at m = 1 we get 
m 

v - l =  1 k@:sk. 
k = l  

Since @: = 1 we may invert (8) at least for sufficiently large o 

s = U-' - 2G?;/o2 + (8(G?:)2 - 3 @ : ) / u 3  + . . . 

(7) 

Then insert (9) into (7) to obtain the following expression for the correlation functions: 
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Notice that the 0; are the functions of U. For the perfect gas case the 0; does not 
depend on u ( g o ( q ) m  = 1). 

Expression U = w -[X:I? ( T ~  * p k U ) - U ]  gives us a set of recurrence relations 
between the cluster functions, which is easily seen from the coordinate form of this 
vector equation 

n-1 

U [ ( q ) m ,  (4)n1= W[(q)m, ( 4 ) n I -  c i k ( Q \ R k ) U [ ( q ) m ,  Rk1. 
k = O  R k c Q  

The integral form of this expression is ( q ! = O ) :  

n -2 

k =O 
U:= w,"- 1 n ! [ k ! ( n  - k ) ! ] - l 7 j L ~ ?  

where U; = WO" = g 0 ( q ) ,  and U? 3 w?. This expression with any recurrence relations 
between w r  and q : - k  may be also useful for convergence estimations of the expression 

0 then the expression ( 7 )  reproduces the perfect 
( 7 ) .  

Finally, we may notice that if 
gas case (s = z )  (De Boer 1948). 

3. Conclusion 

The present paper generalizes the method of cluster expansions as applied to the 
correlation functions of non-ideal systems. The obtained series of the perturbation 
theory (7)  associates the correlation functions of the disturbed system with the 
correlation functions of the reference system. The main parameter which determines 
the convergence of series (7) is the parameter a' /u where a3 - J v S v l f i i l g o ( q ) 2  d(q)z/ V. 
The second parameter which appears in the terms of series (7) starting from 02" is the 
correlation radius roof the reference system. It should be noted that expansion (7) may 
well converge in spite of the fact that these systems themselves may be strongly 
non-ideal. In this case the convergence of the series (7)  is defined by the smallness of 
a3/u,  while the parameter r i / u  is no longer small. It is hoped that the method proposed 
can be used to build up a perturbation theory for non-thermodynamic quantities such as 
transport coefficients, fluctuations and microfield distributions. 
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